Optimize TSK Fuzzy Systems for Classification Problems: Minibatch Gradient Descent With Uniform Regularization and Batch Normalization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Minibatch Stochastic Gradient Descent using Stratified Sampling

Stochastic Gradient Descent (SGD) is a popular optimization method which has been applied to many important machine learning tasks such as Support Vector Machines and Deep Neural Networks. In order to parallelize SGD, minibatch training is often employed. The standard approach is to uniformly sample a minibatch at each step, which often leads to high variance. In this paper we propose a stratif...

متن کامل

L2 Regularization versus Batch and Weight Normalization

Batch Normalization is a commonly used trick to improve the training of deep neural networks. These neural networks use L2 regularization, also called weight decay, ostensibly to prevent overfitting. However, we show that L2 regularization has no regularizing effect when combined with normalization. Instead, regularization has an influence on the scale of weights, and thereby on the effective l...

متن کامل

Gradient Descent with Proximal Average for Nonconvex and Composite Regularization

Sparse modeling has been highly successful in many realworld applications. While a lot of interests have been on convex regularization, recent studies show that nonconvex regularizers can outperform their convex counterparts in many situations. However, the resulting nonconvex optimization problems are often challenging, especially for composite regularizers such as the nonconvex overlapping gr...

متن کامل

Solving Prediction Games with Parallel Batch Gradient Descent

Learning problems in which an adversary can perturb instances at application time can be modeled as games with datadependent cost functions. In an equilibrium point, the learner’s model parameters are the optimal reaction to the data generator’s perturbation, and vice versa. Finding an equilibrium point requires the solution of a difficult optimization problem for which both, the learner’s mode...

متن کامل

Clustering threshold gradient descent regularization: with applications to microarray studies

MOTIVATION An important goal of microarray studies is to discover genes that are associated with clinical outcomes, such as disease status and patient survival. While a typical experiment surveys gene expressions on a global scale, there may be only a small number of genes that have significant influence on a clinical outcome. Moreover, expression data have cluster structures and the genes with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Fuzzy Systems

سال: 2020

ISSN: 1063-6706,1941-0034

DOI: 10.1109/tfuzz.2020.2967282